Search results for "variable exponent sobolev space"

showing 4 items of 4 documents

Three solutions to mixed boundary value problem driven by p(z)-Laplace operator

2021

We prove the existence of at least three weak solutions to a mixed Dirichlet–Neumann boundary value problem for equations driven by the p(z)-Laplace operator in the principal part. Our approach is variational and use three critical points theorems.

Dirichlet–Neumann boundary value problemSettore MAT/05 - Analisi MatematicaGeneral MathematicsMathematical analysisp(z)-Laplace operatorBoundary value problemvariable exponent Sobolev spaceLaplace operatorMathematics
researchProduct

Weak solutions to Dirichlet boundary value problem driven by p(x)-Laplacian-like operator

2017

We prove the existence of weak solutions to the Dirichlet boundary value problem for equations involving the $p(x)$-Laplacian-like operator in the principal part, with reaction term satisfying a sub-critical growth condition. We establish the existence of at least one nontrivial weak solution and three weak solutions, by using variational methods and critical point theory.

Pure mathematicsApplied MathematicsOperator (physics)010102 general mathematicsdirichlet boundary value problem01 natural sciencesDirichlet distribution010101 applied mathematicssymbols.namesakeSettore MAT/05 - Analisi MatematicaP(x)-Laplacian-like operatorQA1-939symbolsvariable exponent sobolev spaceBoundary value problem0101 mathematics$p(x)$-laplacian-like operatorLaplace operatorMathematicsMathematicsElectronic Journal of Qualitative Theory of Differential Equations
researchProduct

Multiple solutions for a Neumann-type differential inclusion problem involving the p(.)-Laplacian

2012

Using a multiple critical points theorem for locally Lipschitz continuous functionals, we establish the existence of at least three distinct solutions for a Neumann-type differential inclusion problem involving the $p(\cdot)$-Laplacian.

Pure mathematicsApplied Mathematicsthree-critical-points theoremdifferential inclusion problemType (model theory)Lipschitz continuityDifferential inclusionCritical points of locally Lipschitz continuous functionalcritical points of locally Lipschitz continuous functionalsp-LaplacianDiscrete Mathematics and Combinatoricsp(x)-Laplacian; variable exponent Sobolev space; critical points of locally Lipschitz continuous functionals; differential inclusion problem; three-critical-points theoremp(x)-Laplacianvariable exponent Sobolev spaceAnalysisMathematics
researchProduct

One-dimensional nonlinear boundary value problems with variable exponent

2018

In this paper, a class of nonlinear differential boundary value problems with variable exponent is investigated. The existence of at least one non-zero solution is established, without assuming on the nonlinear term any condition either at zero or at infinity. The approach is developed within the framework of the Orlicz-Sobolev spaces with variable exponent and it is based on a local minimum theorem for differentiable functions.

Variable exponent Sobolev spacemedia_common.quotation_subject02 engineering and technology01 natural sciences0202 electrical engineering electronic engineering information engineeringDiscrete Mathematics and CombinatoricsBoundary value problemDifferentiable function0101 mathematicsDifferential (infinitesimal)P(x)-LaplacianDiscrete Mathematics and Combinatoricmedia_commonMathematicsDirichlet problemDirichlet problemApplied Mathematics010102 general mathematicsMathematical analysisZero (complex analysis)AnalysiDirichlet problem; P(x)-Laplacian; Variable exponent Sobolev spaces; Analysis; Discrete Mathematics and Combinatorics; Applied MathematicsMixed boundary conditionInfinityNonlinear system020201 artificial intelligence & image processingAnalysis
researchProduct